On a projective class of Finsler metrics with orthogonal invariance
نویسندگان
چکیده
منابع مشابه
On a class of locally projectively flat Finsler metrics
In this paper we study Finsler metrics with orthogonal invariance. We find a partial differential equation equivalent to these metrics being locally projectively flat. Some applications are given. In particular, we give an explicit construction of a new locally projectively flat Finsler metric of vanishing flag curvature which differs from the Finsler metric given by Berwald in 1929.
متن کاملProjective complex Finsler metrics
In this paper we obtain the conditions in which two complex Finsler metrics are projective, i.e. have the same geodesics as point sets. Two important classes of such metrics are submitted to our attention: conformal projective and weakly projective complex Finsler spaces. For each of them we study the transformations of the canonical connection. We pay attention for local projectivity with a pu...
متن کاملon a special class of finsler metrics
in this paper, we study projective randers change and c-conformal change of p-reduciblemetrics. then we show that every p-reducible generalized landsberg metric of dimension n 2 must be alandsberg metric. this implies that on randers manifolds the notions of generalized landsberg metric andberwald metric are equivalent.
متن کاملλ-Projectively Related Finsler Metrics and Finslerian Projective Invariants
In this paper, by using the concept of spherically symmetric metric, we defne the notion of λ-projectively related metrics as an extension of projectively related metrics. We construct some non-trivial examples of λ-projectively related metrics. Let F and G be two λ-projectively related metrics on a manifold M. We find the relation between the geodesics of F and G and prove that any geodesic of...
متن کاملa class of lift metrics on finsler manifolds
in this paper, we are going to study the g-natural metrics on the tangent bundle of finslermanifolds. we concentrate on the complex and kählerian and hermitian structures associated with finslermanifolds via g-natural metrics. we prove that the almost complex structure induced by this metric is acomplex structure on tangent bundle if and only if the finsler metric is of scalar flag curvature. t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Differential Geometry and its Applications
سال: 2017
ISSN: 0926-2245
DOI: 10.1016/j.difgeo.2017.03.014